С НОВЫМ ГОДОМ!!!

Механика разрушения. Трещиностойкость конструкций

Механика разрушения в APMFracture: механика разрушения

В настоящее время опция является базовой функциональной возможностью конечно-элементного ядра APM Structure3D, являющегося основой программных продуктов APM WinMachine и APM Civil Engineering. 

Напряженное состояние нагруженных деталей неоднородно. В отдельных областях таких деталей могут возникнуть так называемые концентраторы, напряжение в которых многократно превышает номинальные величины.

Принято считать, что наличие высоких напряжений в концентраторах не влияет на статическую прочность, но оказывает существенное влияние на долговечность. В любом случае в местах локальной концентрации напряжений возможно появление участков с нарушением сплошности, которые характеризуются наличием трещин, зон пластичности и других неоднородностей. Детали машиностроительных и строительных конструкций с дефектами сплошности в концентраторах напряжений допускаются к эксплуатации, однако надежно прогнозировать границы допустимых эксплуатационных силовых воздействий можно только в том случае, если правильно смоделировать протекающие в концентраторах напряжений процессы.

Способность материалов с трещинами сопротивляться внешнему нагружению называется трещиностойкостью. В программных продуктах прочностного анализа компании НТЦ «АПМ» имеются инструменты для моделирования и последующего  расчета параметров трещиностойкости для изотропных материалов с линейными, кусочно-линейными и нелинейными механическими характеристиками.

Принципиально различают два вида разрушения трещин. Это статическое разрушение, возникающее при постоянной внешней нагрузке, и усталостное разрушение при переменной. Анализ усталостного расчета проводится с целью определения допустимого числа циклов нагружения. При этом внешняя нагрузка может быть гармонической, блочной и стохастической (случайной). Таким образом, при расчете усталостной трещиностойкости можно учесть любой вариант внешнего переменного нагружения, путем приведения любого из них к гармоническому.

Стоимость лицензии опции Программного продукта предоставляется по письменному запросу на официальный электронный адрес компании com@apm.ru. Стоимость зависит от типа лицензии и варианта ключа лицензирования, а также от конфигурации и комплектации, если таковая имеется.

Трещиностойкость в продуктах APM

 Основы выполнения расчетов трещиностойкости

Расчет трещиностойкости в APMВ основе выполнения расчетов трещиностойкости лежит метод оценки напряженно – деформированного состояния трещины и граничащих с ней областей, для реализации которого применяется метод конечных элементов (FEM). Обычно размеры трещины много меньше размеров самой детали, поэтому для корректного определения напряжений в концентраторе необходимо обеспечить в этой точке значительное сгущение конечно-элементной сетки, что ведет к увеличению размерности задачи и возрастанию расчетного времени. По этой причине наряду с FEM – методом в программных продуктах компании используется также XFEM – метод, который не предполагает локального измельчения сетки.

Конечно-элементный анализ можно выполнить и для отдельного конечного элемента, оценивая его нагрузочную способность. Если конечный элемент утратил способность к восприятию нагрузки, это учитывается при определении нагрузочной способности объекта в целом. Этот метод, получивший название «Жизнь и Смерть» конечного элемента, также реализован в программных продуктах компании НТЦ «АПМ». Он может эффективно применяться на этапе выполнения проектировочного расчета. 

Расчет трещиностойкости в APMЗатраты, связанные с проведением натурных испытании на этапе проектирования и замены элемента конструкции на этапе эксплуатации в условиях конкуренции, очень часто являются экономически необоснованными. Гораздо дешевле и быстрее провести анализ на прочность и трещиностойкость с использованием программного обеспечения.

Специализированный модуль для анализа элементов конструкции на прочность и трещиностойкость включает в себя три функционала:

  • Встроить трещину в модель (4-х узловые тетраэдры);
  • Трещины - жизнь/смерть элементов;
  • Трещины - XFEM.

 

Функционал «Встроить трещину в модель»

Расчет трещиностойкости в APMПозволяет инженеру-расчетчику провести анализ элементов конструкции на трещиностойкость на этапе эксплуатации. Поддерживает статический, нелинейный и усталостный расчет. Статический и усталостный расчет выполняется для хрупкого и квазихрупкого состояния материалов. Такое состояние характеризуется небольшим относительным удлинением после разрыва (<15%).

Результатом статического расчета являются значения следующих параметров линейной упругой механики разрушения (ЛУМР):

  • коэффициент интенсивности напряжении (КИН) для трех типов трещин (KI, KII, KIII);
  • интенсивность выделения энергии для трех типов трещин (GI, GII, GIII);
  • инвариантный J-интеграл.

По результатам усталостного расчета доступны следующие параметры ЛУМР:

  • число циклов до разрушения по Парису (если характер изменения нагрузки повторно-переменный);
  • коэффициент запаса для случайных нагружений.

Расчет трещиностойкости в APMВ случае, когда зона текучести у вершины трещины превышает 20% длины трещины или относительное удлинение после разрыва выше допустимых 15%, то материал считается пластичным. Поэтому, для адекватной оценки состояния материала у вершины трещины необходимо выполнить нелинейный расчет, который включает в себя:

  • физическую нелинейность;
  • общую нелинейность.

В случае же, когда в элементе конструкции с трещиной небольшие деформации сопровождаются большими перемещениями, анализ на трещиностойкость следует проводить в условиях геометрической нелинейности.

Результатом нелинейного анализа являются значения J-интеграла на каждом контуре интегрирования.

Все результаты хранятся в виде текстового файла, который включает в себя значения выбранных параметров механики разрушения в каждом узле фронта трещины. Форма трещины представляет собой полуэллипсойд и может быть любых размеров.


Расчет трещиностойкости в APMПриложением к функционалу является база данных свойств материалов для статической и усталостной ЛУМР. Она включает в себя различные типы материалов и содержит следующие данные:

  • критическое значение КИН для трещины первого типа при плоско-деформированном состояний (KIC);
  • пороговое значение КИН (Kth);
  • твердость по Виккерсу (HV);
  • константа n Париса;
  • константа C Париса.

 

Функционал «Трещины - жизнь/смерть элементов»

Расчет трещиностойкости в APMПозволяет инженеру-расчетчику провести анализ элементов конструкции на прочность и трещиностойкость на этапе проектирования. В основе анализа лежат инструменты из сопротивления материалов и ЛУМР. Адекватное решение можно получить только для материалов, обладающих небольшим относительным удлинением после разрыва (<15%).

Благодаря использованию модифицированной функций "Birth and Death" КЭ, функционал способен проследить процессы зарождения и распространения трещин. Позволяет проводить анализ на прочность и трещиностойкость не только в области машиностроения, но и в строительной области, например, выполнить расчет железобетонной балки, тем самым оценить ее прочность по второму предельному состоянию. Функционал поддерживает следующие типы КЭ первого порядка:

  • 3-х узловые пластинчатые;
  • 4-х узловые пластинчатые;
  • 4-х узловые объемные (тетраэдры);
  • 5-ти узловые объемные (пирамиды);
  • 6-ти узловые объемные (треугольные призмы);
  • 8-ми узловые объемные (гексаэдры). А также их комбинации.

В карте результатов можно посмотреть анимацию процесса зарождения и распространения трещин.

 

 Функционал «Трещины - XFEM»

Расчет трещиностойкости в APMXFEM переводится как расширенный метод конечных элементов и является следующим шагом (после функций "Birth and Death" КЭ) в решении задач ЛУМР. Данный функционал способен получить более точное распределение полей напряжении и деформации у вершины трещины и спрогнозировать ее дальнейшее поведение. Позволяет инженеру-расчетчику оценить трещиностойкость конструкции с трещиной любой формы на этапе эксплуатации. Результаты анализа доступны в карте результатов.

 

Механика разрушения в APMВозможность оценки элементов конструкции на прочность и трещиностойкость предназначена для сокращения издержек производства, связанных с проведением натурных испытании, и помогает инженеру-расчетчику принять решение о дальнейшей эксплуатации тел с трещинами. Наличие встроенной базы данных свойств материалов для ЛУМР позволяет преодолеть главное препятствие для практического применения инструментов ЛУМР.