

141070, Московская обл., г. Королев, Октябрьский бульвар, д. 14, офис 6

Тел.: (495) 120-58-10, (495) 514-84-19

E-mail: com@apm.ru Internet: www.apm.ru

ПЛАН ОКАЗАНИЯ УСЛУГ ПО СОПРОВОЖДЕНИЮ

Вводный курс в дистанционной форме по подготовке и решению задач с использованием программного продукта «APM Civil Engineering»

Для кого предназначен курс

Для пользователей, ранее не имевших опыт работы в программах конечно-элементного анализа и ещё не обладающих основной инженерной терминологией.

Задачи курса

Ознакомить пользователя с некоторыми основами метода конечных элементов (МКЭ), правилами построения моделей (стержневых и оболочечных) средствами APM Civil Engineering (APM CE), а также порядком наделения моделей свойствами и анализом результатов расчёта в виде перемещений, усилий и напряжений.

Продолжительность

3 рабочих дня (12 часов). Дополнительно слушателям потребуется время для решения задач, выделенных на самостоятельную работу.

Техническая обеспеченность

Наличие отдельного компьютера для каждого слушателя, оснащённого двумя мониторами (разрешением не менее 1920х1080), гарнитурой (наушники с микрофоном) и, желательно, видеокамерой. Также обязательным является наличие сети Интернет и канала связи с пропускной способностью от 5 МБит/с.

Основные требования к компьютеру

Процессор – четыре ядра, поддерживающий 64-х разрядную адресацию. Объем оперативной памяти – от 8 Гб. Размер свободного пространства на жестком диске от 500 Мб.

Этап 1 (4 часа)

Основная часть:

- Теоретические представления о методе конечных элементов. Основные типы конечных элементов. Концепция дискретизации континуальной задачи. Рассмотрение основных типов конечных элементов, реализованных в программе APM Civil Engineering.
- Основы моделирования. Узлы, стержневые, оболочечные, объёмные конечные элементы. Свойства моделей: материалы, сечения, толщины. Граничные условия: нагрузки, виды нагрузок, опорные закрепления. Геометрические операции с моделями, преобразование свойств элементов (поворот сечений, смещение пластины и пр.). Работа с группами выделенных элементов и узлов.

Практика:

- Обсуждение вопросов, связанных с методом конечных элементов, правила выбора типа конечного элемента для решения задач, а также ответы на принципиальные вопросы.
- Построение типовой схемы здания или сооружения с использованием описанного в основной части функционала.

Этап 2 (4 часа)

Основная часть:

- Работа с пользовательскими сечениями и материалами. Создание пользовательского поперечного сечения, библиотек сечений, определение геометрических характеристик сечения. Работа со свойствами сечений (смещение сечений), пластины без жёсткости, смещение пластин с привязкой к расчётной модели.
- Правила назначения шарниров, освобождения связей, объединения перемещений. Назначение дополнительных свойств модели с привязкой к реальным узлам. Рассмотрение конкретных узлов из типовых серий.

Практика:

- Обсуждение вопросов по предыдущему этапу.
- Формирование пользовательских сечений и назначение их в модели.
- На созданной в предыдущем этапе модели назначение параметров примыкания элементов друг к другу, описанных в основной части.

Этап 3 (4 часа)

Основная часть:

– Работа с результатами расчёта: перемещения и их компоненты, напряжения и компоненты тензора напряжений, внутренние силовые факторы. Карта результатов и меню нагрузки. Анализ напряжённого состояния в сечении. Параметры статического линейного расчёта и параметры расчёта на устойчивость. Некоторые критерии прочности, жёсткости и устойчивости.

Практика:

- Статический расчёт модели с последующей проверкой прочности, жёсткости и устойчивости
- Вопросы от пользователей по теме занятия и по всем занятиям. Обсуждение будущих нововведений.