Октяорьский оульвар, д. 14, офис 6 Тел.: (495) 120-58-10, (495) 514-84-19

ДПМ ИНЖЕНЕРНЫЕ РАСЧЕТЫ ДЛЯ МАШИНОСТРЕНИЯ И СТРОИТЕЛЬСТВА

E-mail: com@apm.ru Internet: www.apm.ru

# ПЛАН ОКАЗАНИЯ УСЛУГ ПО СОПРОВОЖДЕНИЮ

# Базовый курс в дистанционной форме по подготовке и решению задач с использованием программного продукта «APM Civil Engineering»

# Для кого предназначен курс

Для пользователей, ранее работавших программах конечно-элементного анализа, включая APM Civil Engineering (APM CE) и знакомых с основными принципами МКЭ, а также знающих основы Сопротивления материалов, Строительной механики, Теории Упругости и Нормативную документацию по расчёту и проектированию зданий и сооружений.

# Задачи курса

Ознакомить пользователя с возможностями программы APM CE в части выполнения расчёта конструкций, используя функционал расчёта конструктивных элементов (стальных, железобетонных, деревянных), и оценки прочности стальных узловых соединений в соответствии с действующими нормативными документами.

#### Продолжительность

5 рабочих дней (20 часов). Дополнительно слушателям потребуется время для решения задач, выделенных на самостоятельную работу.

#### Техническая обеспеченность

Наличие отдельного компьютера для каждого слушателя, оснащённого двумя мониторами (разрешением не менее 1920х1080), гарнитурой (наушники с микрофоном) и, желательно, видеокамерой. Также обязательным является наличие сети Интернет и канала связи с пропускной способностью от 5 МБит/с.

# Основные требования к компьютеру

Процессор – четыре ядра, поддерживающий 64-х разрядную адресацию. Объем оперативной памяти – от 8 Гб. Размер свободного пространства на жестком диске от 500 Мб.



# Этап 1 (4 часа)

#### Основная часть:

- Обзор основных возможностей программы APM Civil Engineering.
- Построение модели стального каркаса с использованием стержневых и оболочечных конечных элементов. Назначение основных свойств модели в виде материалов, поперечных сечений, толщин элементов. Правила формирования силовых и кинематических граничных условий: нагрузки, закрепления.
- Назначение внешних нагрузок (по загружениям) в соответствии с Нормативными документами (пример использования ветровой нагрузки в программе). Назначение комбинаций внешних нагрузок. Выполнение расчёта. Анализ результатов по комбинациям. Назначение РСУ, правила их задания в соответствии с нормативными документами.

## Практика:

– Построение модели каркаса здания и назначение применительно к этому зданию указанных в основной части операций.

# Этап 2 (4 часа)

# Основная часть:

- Диалог «Стальные конструктивные элементы». Правила назначения параметров расчёта. Соответствие задаваемых в диалоговом окне параметров положениям нормативного документа. Пример выполнения расчёта стальных конструктивных элементов по результатам РСУ, по комбинациям.
- Вычисление усилий, необходимых для расчёта узлового соединения. Построение простейшего узла средствами модуля APM Structure3Dc помощью оболочечных конечных элементов.

# Практика:

- Обсуждение вопросов по предыдущему этапу.
- На построенной на предыдущем этапе модели каркаса выполнение расчёта стальных конструктивных элементов.



# Этап 3 (4 часа)

#### Основная часть:

- Моделирование и расчёт одного/двух стальных типовых узла. Импорт модели в программу APM Studio, формирование конечно-элементной модели. Назначение нагрузок, экспорт в APM Structure3D. Расчёт и анализ результатов. Понятие о концентрации напряжений при выполнении расчётов узловых соединений. Общие правила оценки прочности узлов.
  - Основы моделирования деревянных конструкций.
- Диалог «Деревянные конструктивные элементы». Правила назначения параметров расчёта. Соответствие задаваемых в диалоговом окне параметров положениям нормативного документа. Пример выполнения расчёта стальных конструктивных элементов по результатам РСУ, по комбинациям загружений.

## Практика:

- Обсуждение вопросов по предыдущему этапу.
- Порядок определения усилий для расчёта узлов.
- Построение модели деревянной конструкции.
- Работа с диалогом «Деревянные конструктивные элементы».

## Этап 4 (4 часа)

## Основная часть:

- Модальный анализ пространственных систем. Порядок проведения и анализ результатов. Задачи, для которых модальный анализ служит в качестве исходных данных. Загрузка готовой модели. Назначение нагрузок и воздействий в соответствии с действующими нормативными документами.
- Расчёт пульсационной составляющей ветровой нагрузки. Порядок задания исходных данных, оценка результатов. Пульсация как разновидность динамического анализа по формам колебаний.
- Расчёт на сейсмические воздействия в соответствии с нормативным документами или по заданным спектрам ответа. Базовые требования для проведения корректного расчёта на сейсмические воздействия.

# Практика:

– Выполнение слушателями описанных в основной части операций на готовых моделях.



# Этап 5 (4 часа)

# Основная часть:

Основы моделирования железобетонных конструкций.

Диалог «Армированные конструктивные элементы». Правила назначения параметров расчёта. Соответствие задаваемых в диалоговом окне параметров положениям нормативного документа. Пример выполнения расчёта стальных конструктивных элементов по результатам РСУ, по комбинациям загружений.

# Практика:

- Обсуждение вопросов по предыдущему этапу.
- Выполнение проверочного и проектировочного расчёта армированных конструктивных элементов (подбор и проверка армирования) для стержневых и оболочечных элементов.